Abstract

First principles model calculations of the vibration-to-vibration (VV) energy transfer (ET) processes NO(+)(nu=1)+N(2)(nu=n-1)-->NO(+)(nu=0)+N(2)(nu=n)+(28.64n-14.67) cm(-1) and NO(+)(nu=n)+N(2)(nu=0)-->NO(+)(nu=n-1)+N(2)(nu=1)+(32.52(n-1)+13.97) cm(-1) for n=1-3 in the 300-1000 K temperature range are performed. The VV ET probability is computed for three mechanisms: (1) The charge on NO(+) acting on the average polarizability of N(2) induces a dipole moment in N(2) which then interacts with the permanent dipole moment of NO(+) to mediate the energy transfer. (2) The charge on NO(+) acting on the anisotropic polarizability of N(2) induces a dipole moment in N(2) which then interacts with the permanent dipole moment of NO(+) to mediate the energy transfer. (3) The dipole moment of NO(+) interacts with the quadrupole moment of N(2) to mediate the energy transfer. Because the probability amplitudes of the second and third mechanisms add coherently the ET probability for these two mechanisms is given as a single number. The probability of energy transfer per collision is in the 5 x 10(-3) range. The results of this calculation are compared with the available experimental data. This calculation should help quantify the role of NO(+) in the energy budget of the upper atmosphere.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.