Abstract

A 10-Gb/s optical single sideband (OSSB) system using alternate mark inversion return-to-zero and ideal electrical precompensation of dispersion is optimized numerically by means of an optical dispersion compensator at the receiver side. The transmission regime observed in the optimized system resembles the pseudolinear regime previously described for systems with bit rates of 40 Gb/s and above. Considering multichannel transmission, the OSSB system has a Q -factor penalty of 2 dB compared to an intensity modulated optical double sideband system with optimized optical dispersion map.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.