Abstract

We propose two new optimistic planning algorithms for nonlinear hybrid-input systems, in which the input has both a continuous and a discrete component, and the discrete component must respect a dwell-time constraint. Both algorithms select sets of input sequences for refinement at each step, along with a continuous or discrete step to refine (split). The dwell-time constraint means that the discrete splits must keep the discrete mode constant if the required dwell-time is not yet reached. Convergence rate guarantees are provided for both algorithms, which show the dependency between the near-optimality of the sequence returned and the computational budget. The rates depend on a novel complexity measure of the dwell-time constrained problem. We present simulation results for two problems, an adaptive-quantization networked control system and a model for the COVID pandemic.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call