Abstract
Local analgesics effectively allow patients to relieve postoperative pain and reduce the need for inhaled general anesthetics or opioids. Compared with other similar long-acting local anesthetics, ropivacaine (Rop) is widely used due to its potential to minimize cardiotoxicity. However, the relatively short duration of Rop efficacy, which lasts for several hours after injection, is considered insufficient for long-term acute and chronic pain treatment. At present, repeated injections or indwelling catheters are used to achieve long-term drug delivery, which can easily cause infection and inflammation. To achieve externally controllable analgesia for a prolonged time, we prepared near-infrared (NIR)-responsive Rop liposomes (Rop@Lip) containing photosensitizers PdPC(OBu)8 and unsaturated phospholipid DLPC. The particle size of the Rop@Lip was 234.73 ± 5.21 nm, the PDI was 0.42 ± 0.02, and the drug encapsulation rate was 94.62 ± 1.1%. The release of Rop was highly NIR-dependent in vitro and in vivo. To ensure that the liposomes reside around the nerve for an extended period, we next designed an in situ gel with chitosan (CS) and β-sodium glycerophosphate (β-GP) to form a liposomal gel (Lip/Gel). This Lip/Gel composite drug delivery system could be retained in vivo for 10 d, reduce the side effects caused by drug overdose, and prolong the duration of efficacy. In summary, the NIR-responsive Rop composite drug delivery system generated in this paper can effectively solve the shortcomings of traditional local injections, reduce the toxicity and side effects of free Rop, and provide a basis for a light-responsive delivery system of analgesic drugs.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have