Abstract

Near-infrared (NIR) reflectance spectroscopy was investigated as a method for prediction of total dietary fiber (TDF) in mixed meals. Meals were prepared for spectral analysis by homogenization only (HO), homogenization and drying (HD), and homogenization, drying, and defatting (HDF). The NIR spectra (400-2498 nm) were obtained with a dispersive NIR spectrometer. Total dietary fiber was determined in HDF samples by an enzymatic-gravimetric assay (AOAC 991.43), and values were calculated for HD and HO samples. Using multivariate analysis software and optimum processing, partial least squares models (n = 114) were developed to relate NIR spectra to the corresponding TDF values. The HO, HD, and HDF models predicted TDF in independent validation samples (n = 37) with a standard error of performance of 0.93% (range 0.7-8.4%), 1.90% (range 2.2-18.9%), and 1.45% (range 2.8-23.3%) and r(2) values of 0.89, 0.92, and 0.97, respectively. Compared with traditional analysis of TDF in mixed meals, which takes 4 days, NIR spectroscopy provides a faster method for screening samples for TDF. The accuracy of prediction was greatest for the HDF model followed by the HD model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call