Abstract

Near-Infrared Spectroscopy (NIRS) could be of clinical relevance in modern cartilage regeneration.In a miniature pig model correlation of measurements and histologic scores have never been used before. The data analysis was part of an animal project that investigated the effects of seeding a chondrogenic and osteogenic scaffold with a bone-marrow-derived cell concentrate and reports the histological and mechanical properties. We created 20 osteochondral defects in the femoral condyles of 10 miniature pigs.The defects were left empty (E), filled with the grafted cylinder upside down (U), or with a combined scaffold (S) containing a spongy bone cylinder covered with a collagen membrane. In the fourth group, the same scaffolds were implanted but seeded with a stem cell concentrate (S+BMCC). The animals were euthanized after 3 months, and histologic and spectrometric analyses were performed. NIRS measurements were significantly higher in the central area of the defects of group S+BMCC compared to the central area of the defects of group U. In all groups, a correlation between NIRS and the histologic scores could be demonstrated though on different levels. In the central area, a good NIRS measurement correlates with low (good) histologic scores. In group E and group S, this negative correlation was significant (p=0.01). For the first time, NIRS was successfully used to evaluate osteochondral constructs in a miniature pig model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.