Abstract
Continuous monitoring of cerebral oxygenation is one of the diagnostic tools used in patients with brain injury. Direct and invasive measurement of cerebral oxygenation with a partial brain oxygen pressure (PbtO2) probe is promising but invasive. Noninvasive assessment of regional transcranial oxygen saturation using near-infrared spectroscopy (NIRS) may be feasible. The aim of this study was to evaluate the interchangeability between PbtO2 and NIRS over time in patients with nontraumatic subarachnoid hemorrhage. This retrospective study was performed in a neurocritical care unit. Study participants underwent hourly PbtO2 and NIRS measurements over 72h. Temporal agreement between markers was described by their pointwise correlation. A secondary analysis assessed the structure of covariation between marker trajectories using a bivariate linear mixed model. Fifty-one patients with subarachnoid hemorrhage were included. A total of 3362 simultaneous NIRS and PbtO2 measurements were obtained. The correlation at each measurement time ranged from - 0.25 to 0.25. The global correlation over time was - 0.026 (p = 0.130). The bivariate linear mixed model confirmed the lack of significant correlation between the PbtO2 and NIRS measurements at follow-up. NIRS was unable to detect PbtO2 values below 20mm Hg (area under the receiver operating characteristic curve 0.539 [95% confidence interval 0.536-0.542]; p = 0.928), and percentage changes in NIRS were unable to detect a decrease in PbtO2 ≥ 10% (area under the receiver operating characteristic curve 0.615 [95% confidence interval 0.614-0.616]; p < 0.001). PbtO2 and NIRS measurements were not correlated. There is no evidence that NIRS could be a substitute for PbtO2 monitoring in patients with nontraumatic subarachnoid hemorrhage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.