Abstract

Toluene swell or equilibrium swelling is universally used by rubber factories to measure the degree of crosslink of their compounded or prevulcanized latices at different stages of production. To apply near infrared spectroscopy for rapid and accurate quality control, spectral acquisition of prevulcanized latex, thin film and thick film was performed using a Fourier transform near infrared spectrometer in diffuse reflection mode across the wavenumber range of 12,500–3600 cm−1. For prevulcanized latex an effective model was developed using partial least squares regression with preprocessing (first derivative + straight line subtraction method). The coefficient of determination (r2), root mean square error of cross validation and bias of the validation set were 0.71, 3.93% and −0.005%, respectively. For the thin film model the r2, root mean square error of cross validation and bias were 0.65, 4.01% and −0.028%, respectively. Whereas for the thick film model the r2, root mean square error of cross validation and bias were 0.70, 4.00% and −0.006%, respectively. Three models including prevulcanized latex, thin film and thick film were validated by 23 unknown samples, providing standard error of prediction and bias of 5.357 and 2.494, 4.565 and 1.001 and 3.641 and −0.961%, respectively, for prevulcanized latex, thin film and thick film. The model developed for the thick film spectra gave the best results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.