Abstract
Excipient concentrations are critical quality attributes of monoclonal antibody (mAb) drug products and affect their safety and efficacy. In manufacturing processes, mAb products are formulated into the buffer containing the desired excipients using ultrafiltration (UF) and diafiltration (DF). Control of excipient concentrations is a challenge during high concentration UF due to electrostatic interactions which lead to excipient concentration drifts. This challenge is of increasing importance due to the growing preference towards high concentration subcutaneous drug formulations over conventional intravenous formulations in the biotherapeutic industry. Excipient concentrations are currently measured using offline RP-HPLC which is time-consuming and not suited for real time control. We propose a novel process analytical technology (PAT) tool for monitoring and control of mAb and excipients in high concentration UF using Near Infrared Spectroscopy (NIRS). The NIRS is able to monitor concentrations within ±1% for mAb and ±2% for two common excipients, L-histidine and acetate. A Python-based controller uses real time concentration data to deliver concentrated excipient stock solutions to the UF reservoir whenever the excipient concentrations drift out of range. The PAT control system is able to achieve the target formulation without manual intervention or at-line analysis and is well-suited for implementation in mAb manufacturing platforms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.