Abstract

We have developed a near-infrared (NIR) spectrometer mountable on a head-feeding combine for measuring rice protein in real time while harvesting. The developed sensor employs reflectance optics instead of the more usual transmittance optics because (1) it operates under severe vibration and dust conditions; (2) it performs measurements in high moisture contents, low fluidity of rough rice; and (3) because of low light transmittance due to absorption by husks. The light source was a tungsten halogen lamp, with a diffusion cylinder installed so that uniform light would illuminate the sample. An Si-CCD measured the spectrum from 740 nm to 1140 nm with a post-dispersive grating. We made a calibration curve of brown rice protein from a spectrum of rough rice examined in a laboratory. The calibration curve accuracy was r= 0.87 and SECV (Standard Error of Cross-Validation) =0.47%. In the adopted measurement method, the sensor loaded the rough rice into a wide sample chamber by gravity and analyzed the loaded grain at the bottom using a reflected signal. The developed sensor was able to measure the protein content of brown rice from spectra of rough rice taken under severe conditions, e.g., a high-vibration, high-dust harvesting environment. In addition to the protein content, the rice weight and moisture content could be displayed on the monitoring terminal in real time. The accuracy of the protein content measurements in these field examinations was r=0.65 and SEP (Standard Error of Prediction) =0.22%. The SEP was far better than the SECV of the calibration, but the protein content fell in a narrow range in the field examination. Thus, we concluded that the actual accuracy was the same as the calibration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call