Abstract

Herein, a novel near-infrared (NIR) light-driven photoelectrochemical (PEC) biosensor based on NaYF4:Yb3+, Er3+@Bi2MoO6@Bi (NYF@BMO@Bi) nanocomposites was elaborately developed to achieve highly sensitive detection of microRNA-155 (miRNA-155). To realize signal enhancement, the coupled plasmonic bismuth (Bi) nanoparticles were constructed as an energy relay to facilitate the transfer of energy from NaYF4:Yb3+, Er3+ to Bi2MoO6, ultimately enabling the efficient separation of electron-hole pairs of Bi2MoO6 under the irradiation of a 980 nm laser. For constructing biosensing system, the initial signal was firstly amplified after the addition of alkaline phosphatase (ALP) in conjunction with the biofunctionalized NYF@BMO@Bi nanocomposites, which could catalyze the conversion of ascorbic acid 2-phosphate into ascorbic acid, and then consumed the photoacoustic holes created on the surface of Bi2MoO6 for the enlarging photocurrent production. Upon addition of target miRNA-155, the cascade signal amplification process was triggered while the ALP-modified DNA sequence was replaced and then followed by the initiation of a simulated biocatalytic precipitation reaction to attenuate the photocurrent response. On account of the NIR-light-driven and cascade amplifications strategy, the as-constructed biosensor was successfully utilized for the accurate determination of miRNA-155 ranging from 1 fM to 0.1 μM with a detection limit of 0.32 fM. We believed that the proposed nanocomposites-based NIR-triggered PEC biosensor could provide a promising platform for effective monitoring other tumor biomarkers in clinical diagnostics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.