Abstract

Ischemic stroke (IS) is one of the most dangerous diseases resulting in high mortality and morbidity. The increased brain temperature after IS is closely related to prognosis, making it highly significant to the early diagnosis and the progression evaluation of IS. Herein, a temperature-responsive near infrared (NIR) emissive lanthanide luminescence nanoparticle is developed for the early diagnosis and brain temperature detection of IS. After intravenous injection, the nanoparticles can pass through the damaged blood-brain barrier of the ischemic region, allowing the extravasation and enrichment of nanoparticles into the ischemic brain tissue. The NIR luminescence signals of the nanoparticles are used not only to judge the location and severity of the cerebral ischemic injury but also to report the brain temperature variation in the ischemic area through a visualized way. The results show that the designed nanoparticles can be used for the early diagnosis of ischemic stroke and minimally invasive temperature detection of cerebral ischemic tissues in transient middle cerebral artery occlusion mice model, which is expected to make the clinical diagnosis of ischemic stroke more rapid and convenient, more accurately evaluate the state of brain injury in stroke patients and also guide stroke hypothermia treatment. This article is protected by copyright. All rights reserved.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call