Abstract

This paper presents a systematic investigation of a ZnMgO/InN core-shell nanorods heterojunction device on a p-Si substrate. Here we demonstrated the heteroepitaxial growth of the well-aligned ZnMgO/InN core-shell nanorods structure, which enabled an increased heterojunction area to improve the carrier injection efficiency of nanodevices by plasma-assisted molecular beam epitaxy combined with metal-organic chemical vapor deposition. In situ X-ray photoelectron spectroscopy measurements were performed on the ZnMgO nanorods, the interface of ZnMgO/InN and the InN core-shell nanorods to fully understand the structure and working mechanism of the heterojunction device. The current transport mechanism has been discussed in terms of the characteristics of current-voltage and the energy band diagram of the n-InN/ZnMgO/p-Si heterojunction. At a low forward voltage, the current transport followed the dependence of I ∼ V(1.47), which was attributed to the deep-level assisted tunneling. When the forward voltage was larger than 10 V, the current followed the relation of I ∼ V(2) because of the radiative recombination process. In accordance with the above conclusion, the near-infrared electroluminescence of the diode could be observed after the forward bias voltage up to 11.6 V at room temperature. In addition, the size quantization effect and the intrinsic electron accumulation of the InN core-shell nanorods were investigated to explain the blueshift and broadened bandwidth. Furthermore, the light output power of about 0.6 microwatt at a fixed wavelength of 1500 nm indicated that our study will further provide a useful route for realizing the near-infrared electroluminescence of InN on Si substrate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.