Abstract
AbstractIn the present paper we show results of dark current-voltage measurements performed on p+ a- SiC:H/n c-Si heterojunction diodes at various temperatures (100–400K). We investigated the voltage derivative of these J-V curves in order to the distinguish possible current transport mechanisms. It was found that for low temperatures (<300K), the current is determined by recombination of carriers in the crystalline silicon, whereas at high temperature (>300 K), by a tunnelling mechanism. At room temperature, both mechanisms contribute to the current. By using an equivalent circuit model and detailed numerical simulations we have interpreted our experimental characteristics. The simulations done at room temperature, show that at low forward bias voltage the current is controlled by recombination in the crystalline silicon and that at high forward bias voltage by a combination of multi-step tunnelling and a-SiC:H series resistance. For interface state densities equal to or higher than 1012 cm−2, the recombination was found to be dominated by the states at the amorphous-crystalline silicon interface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.