Abstract

This paper demonstrates for the first time that near-infrared (NIR) chemical imaging can be used for in-line analysis of textile lamination processes. In particular, it was applied for the quantitative determination of the applied coating weight and for monitoring of the spatial distribution of hot melt adhesive layers using chemometric approaches for spectra evaluation. Layers with coating weights between about 25 and 130 g m−2 were used for the lamination of polyester fabrics and nonwovens as well as for polyurethane foam. It was shown that quantitative data with adequate precision can be actually obtained for layers applied to materials with significantly heterogeneous surface structure such as foam or for hidden layers inside fabric laminates. Even the coating weight and the homogeneity of adhesive layers in composites consisting of black textiles only could be quantitatively analyzed. The prediction errors (RMSEP) determined in an external validation of each calibration model were found to range from about 2 g m−2 to 6 g m−2 depending on the specific system under investigation. All calibration models were applied for chemical imaging in order to prove their performance for monitoring the thickness and the homogeneity of adhesive layers in the various textile systems. Moreover, they were used for the detection of irregularities and coating defects. Investigations were carried out with a large hyperspectral camera mounted above a conveyor. Therefore, this method allows large-area monitoring of the properties of laminar materials. Consequently, it is potentially suited for process and quality control during the lamination of fabrics, foams and other materials in field-scale.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.