Abstract

We propose a scheme to obtain the Heisenberg-limited parameter estimation precision by immersing atoms in a thermally equilibrated quasi-one-dimensional dipolar Bose-Einstein condensate reservoir. We show that the collisions between the dipolar atoms and the immersed atoms can result in a controllable nonlinear interaction through tuning the relative strength and the sign of the dipolar and contact interaction. We find that the repulsive dipolar interaction reservoir is preferential for the spin squeezing and the appearance of an entangled non-Gaussian state. As a useful resource for quantum metrology, we also show that the non-Gaussian state results in the phase estimation precision in the Heisenberg scaling, outperforming that of the spin-squeezed state.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call