Abstract

Near-field thermal radiation with its many potential applications in different fields requires a thorough understanding for the development of new devices. In this paper, we report that near-field thermal emission between two parallel SiC thin films separated by a nano-gap, supporting surface phonon polaritons, as modeled via Finite Difference Time Domain Method (FDTD), can be enhanced when structured nanoparticles of different shapes and sizes are present on the surface of the emitting films. We compare different nano-particle shapes and discuss the configurations, which have the highest impact on the enhancement of near-field thermal emission and on the near-field heat flux. Convolutional Perfectly Matched Layer (CPML) boundary condition is used as the boundary condition of choice as it was determined to give the most accurate results compared against the other methodologies when working with sub-wavelength structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.