Abstract

Rainfall has always been a concern for wireless communications systems. As 5G technology relies on high-frequency bands, it is fundamental to model and simulate the interaction of such radio waves with rainfall, as the deployment of large-scale infrastructure for 5G is highly expensive. This research presents a reformulation of the Maxwell equations for a bi-dimensional space in a transverse electric propagation mode, for a linear, inhomogeneous, and isotropic propagation medium with its magnetic and electric properties dependent on time. This reformulation was solved using the Finite Differences in Time Domain (FDTD) method with the Convolutional Perfectly Matched Layer (CPML) boundary condition. Two main frequency propagation scenarios were studied: 5 GHz (corresponding to Wi-Fi in the 802.11n standard as well as to the lowest bands of 5G) and 25 GHz (corresponding to 5G), within a 10m×3m rectangular domain in air and with rain. The rainfall was simulated using a parallel Ziggurat algorithm. According to the findings, while 5 GHz waves experience scattering processes, 25 GHz waves experience substantial dispersion and attenuation throughout the domain in low- to moderate-intensity rain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.