Abstract

AbstractBulk transition metal dichalcogenide (TMDC) nanostructures are regarded as promising material candidates for integrated photonics due to their high refractive index at the near‐infrared wavelengths. In this work, colloidal TMDC waveguides with tailorable dimensions are prepared by a scalable synthetic approach. The optical waveguiding properties of colloidal nanowires are studied by the near‐field nanoimaging technique. In addition to dependence on thickness and wavelength, the excitonic responses and resultant waveguide modes in TMDC nanowires can be modulated by the environmental temperature. With the high‐throughput production and tunable optical properties, colloidal TMDC nanowires highlight the potential for active optical components and integrated photonic devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call