Abstract

Nanostructures of high-refractive-index materials such as semiconductors can support Mie resonances due to confinement of light at the nanoscale and have been investigated both theoretically and experimentally for a range of nanophotonic applications. Transition metal dichalcogenides (TMDCs) from the family of van der Waals layered materials have high refractive index and strong optical anisotropy. Recently, it has been shown that due to the tunable optical properties of TMDCs, they possess enormous potential for designing metasurfaces and various ultra-thin optical elements. Periodically arranged nanoantennas of van der Waals layered materials can exhibit strong spectral resonances in the visible and near-infrared frequencies. In this work, we investigate the scattering and transmission properties of a periodic array of disk-shaped nanoantennas of a TMDC material, tungsten disulfide WS2. We show the dependence of the reflection and transmission spectra from the TMDC nanoantenna array and investigate the spectral features for various thicknesses of the supporting layers positioned between the antenna array and glass substrate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.