Abstract
In the vicinity of the gas–liquid critical point, transport coefficients of pure fluids experience important changes. In particular, the thermal diffusivity tends to zero whereas the isothermal compressibility tends to infinity. Supercritical fluids are thus as dense as liquids and much more expandable than gases. These properties make the hydrodynamic similarity parameters vary over orders of magnitude when nearing the critical point, thus leading to a large field of research. We review here four main fields: heat transfer, cavity flows, interfaces and hydrodynamic instabilities. In the first, we present a fourth adiabatic heat transfer mechanism, called the piston effect, which carries heat much faster than diffusion, in the absence of convection. In the second, we show how this heat transfer mechanism interacts with buoyant convection. In the third, we basically show that a thermally non-homogeneous near-critical fluid behaves as a two miscible-phases fluid. In the fourth, we present some specific behavior of the Rayleigh–Benard convection, as recent experiments and numerical simulations have indicated. The last part gives some pathways in the continuation of the current research. We stress the need to fully develop the hydrodynamic of highly expandable, low heat diffusing fluids since the subject is both a bearer of new physics and is needed for the development of processes in chemical engineering. To cite this article: B. Zappoli, C. R. Mecanique 331 (2003).
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have