Abstract

Cathodoluminescence experiments were performed on a high-quality AlN epitaxial film grown by organometallic vapor phase epitaxy on a large single crystal AlN substrate. The low-temperature near-bandedge spectra clearly show six very narrow lines. The thermal quenching behavior of these emission lines provides insight on how to assign them to free and bound exciton recombination processes. The binding energy for the free-exciton-A in AlN was found to be nearly twice that in GaN. The observation of the free-exciton-A first excited state permitted us to estimate its reduced effective mass and, by using recent reported values for the hole effective mass in Mg-doped AlN, the electron effective mass in AlN has been deduced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.