Abstract

Autonomic and sensory nerves frequently contact mast cells contained in rabbit leptomeningeal arteries. We have previously shown that parasympathetic and peptidergic neurotransmitters can stimulate mast cell granule exocytosis and serotonin (5-HT) release. In the present study, we examined ex vivo the possible action of the main sympathetic neurotransmitter, norepinephrine (NE), on this exocytotic process. NE, which had no effect on mast cell 5-HT content per se, totally inhibited carbachol-induced 5-HT release and partially reduced neuropeptide-induced 5-HT release. Pretreatment with the alpha 1-adrenergic blocker did not affect the inhibitory effect of NE. Pretreatment with specific beta 1- or beta 2-adrenergic blockers antagonized this action, but the beta 2-blocker exerts a more specific dose-dependent antagonism. Together with our previous data, these results indicate that the equilibrium between autonomic and sensory nerves may determine the release of 5-HT from mast cells (parasympathetic and sensory nerves can trigger exocytosis while the sympathetics can inhibit it). Such a mechanism could be implicated in pathophysiological events in which autonomic dysfunction is likely to be involved, such as vascular headache or other phenomena involving inflammation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.