Abstract
The presence of N-nitrosodimethylamine (NDMA) in drinking water is most commonly associated with the chloramination of amine-based precursors. One option to control the NDMA formation is to remove the precursors via pre-oxidation, and prechlorination is among the most effective options in reducing NDMA formation. However, most of the findings to-date are based on single-precursor scenarios using the model precursor dimethylamine (DMA) and natural organic matter (NOM), while few studies have considered the potential interactions between water matrix components and the target precursors when investigating the prechlorination impact. Specifically, little is known for the behaviour of amine-based pharmaceuticals which have recently been reported to contribute to NDMA formation upon chloramination. This work demonstrates that prechlorination can affect both the ultimate NDMA conversion and the reaction kinetics from selected pharmaceuticals, and the nature and extent of the impact was compound-specific and matrix-specific. In the absence of NOM, the NDMA formation from most pharmaceuticals was reduced upon prechlorination, except for sumatriptan which showed a consistent increase in NDMA formation with increasing free chlorine contact time. In the presence of NOM, prechlorination was shown to enhance initial reactions by reducing the binding between NOM and pharmaceuticals, but prolonged prechlorination broke down NOM into smaller products which could then form new bonds with pharmaceuticals and thus inhibit their further conversion into NDMA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.