Abstract
Polygonal fault systems occur in numerous sedimentary basins worldwide, are generally located on passive margins in onlap fill units and tend to comprise the finest grained sediments in this geological setting. These fault systems have been most thoroughly described in the central North Sea basin and the detailed structure shows a significant correlation with lithological variations, both vertically and laterally. Extension measured in stacked decoupled tiers of polygonal faults correlates positively with both clay fraction and smectite content. Lateral facies variations are also observed and indicate that time-equivalent sequences upslope from the smectite-rich polygonally faulted sediments are coarse-grained, clay-poor and undeformed. This leads us to believe that the structure and geometry of the fault system are controlled by the colloidal nature of the sediments, and that the volumetric contraction measured on seismic sections can be accounted for by syneresis of colloidal smectitic gels during early compaction. Syneresis results from the spontaneous contraction of a sedimentary gel without evaporation of the constituent pore fluid. This process occurs due to the domination of interparticle attractive forces in marine clays, dependent on environment, and is governed by the change of gel permeability and viscosity with progressive compaction. The process of syneresis can account for a number of structural features observed within the fault systems, such as tiers of faults, the location of maximum fault throw and growth components at upper fault tips. As such, this paper represents the first attempt to correlate microscale properties of clay-rich sediments to their macroscale seismic character.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have