Abstract
Thermoplastic polyethylene can be welded by the transmission laser welding technique (TTLW) that exhibits some process related benefits with respect other conventional joining methods. This justifies its large use in wide fields, from the automotive to medical or domestic appliances. In this research, we studied single lap joints made by polyethylene pure and filled with carbon nanomaterials (0.2% in weight) to make the polymer laser absorbent. The joints were irradiated by a Nd:YAG laser operating at 1064 nm (first harmonic) with an intensity of 107 W/cm2 and 1 ÷ 30Hz, a maximum pulse energy of 300mJ and a laser spot of ≈ 1 cm2 (no focusing lens were employed). The joints were characterized by morphological analysis, mechanical shear tests and calorimetric analysis. The results suggested that the laser exposition time must be opportunely balanced in order to avoid a poor adhesion between the polymer sheets and to realized efficient joints. In particular the mechanical test showed that the laser exposition time of 40 seconds is the best conditions to obtain the highest shear strength of the joints of 140 N. After too prolonged laser exposure times, degrading phenomena starts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.