Abstract

This work reports that the ablation characteristics of thin CuIn1−x Ga x Se2 (CIGS) solar cell film differ significantly with elemental composition and laser pulse energy. From in situ shadowgraphs measured during Nd:YAG laser (1,064 nm) irradiation of CIGS films and crater morphologies, it was found that strong surface evaporation is dominant for low Ga concentration films of which band gap is well below the photon energy. As the band gap of CIGS film becomes close to or over the laser photon energy due to increased Ga content, surface absorption diminishes and at low laser energy, laser heating of the film plays an important role. It is demonstrated that for the CIGS films with Ga/(Ga + In) ratio being approximately over 0.2, the laser irradiation leads to solid phase removal of the film due to thermomechanical fracture at low laser energy but to ablative evaporation at elevated energy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.