Abstract

The neural cell adhesion molecule NCAM plays an important role in axonal growth, learning, and memory. A signaling pathway has been elucidated in which clustering of the NCAM140 isoform in the neural plasma membrane stimulated the activating phosphorylation of mitogen-activated protein kinases (MAPKs) and the transcription factor cyclic AMP response-element binding protein (CREB). NCAM clustering transiently induced dual phosphorylation (activation) of the MAPKs ERK1 and ERK2 (extracellular signal-regulated kinases) by a pathway regulated by the focal adhesion kinase p125fak, p59fyn, Ras, and MAPK kinase. CREB phosphorylation at serine 133 induced by NCAM was dependent in part on an intact MAPK pathway. c-Jun N-terminal kinase, which is associated with apoptosis and cellular stress, was not activated by NCAM. Inhibition of the MAPK pathway in rat cerebellar neuron cultures selectively reduced NCAM-stimulated neurite outgrowth. These results define an NCAM signal transduction mechanism with the potential for modulating the expression of genes needed for axonal growth, survival, and synaptic plasticity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.