Abstract

Oscillatory neural networks with nano-oscillators and synapse devices are a promising alternative to implement neuromorphic systems owing to its fast recognition speed and low power consumption. In this paper, we demonstrate a compact frequency storable oscillator using nanoscale two-terminal NbO2 insulator-metal-transition devices along with TaOx-based resistive switching memory (RRAM) devices. By controlling RRAM resistance, we realized a wide range of analog oscillation frequencies. The synchronization window of two coupled oscillators, which is a key parameter for determining pattern recognition, increases with the increasing coupling capacitance and decreasing RRAM resistance of the reference oscillator. The simple device structure (metal-NbO2-metal-TaOx-metal), small device area (4F2), and frequency storability of NbO2-based coupled oscillator device show a strong potential for future integrated neuromorphic device application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.