Abstract
Chemometrics and machine learning are artificial intelligence-based methods stirring a transformative change in chemistry. Organic synthesis, drug discovery and analytical techniques are incorporating machine learning techniques at an accelerated pace. However, machine-assisted chemistry faces challenges while solving critical problems in chemistry due to complex relationships in data sets. Even with increasing publishing volumes on machine learning, its application in areas of chemistry is not a straightforward endeavour. A particular concern in applying machine learning in chemistry is data availability and reproducibility. The present review article discusses the various chemometric methods, expert systems, and machine learning techniques developed for solving problems of organic synthesis and drug discovery with selected examples. Further, a concise discussion on chemometrics and ML deployed in analytical techniques such as, spectroscopy, microscopy and chromatography are presented. Finally, the review reflects the challenges, opportunities and future perspectives on machine learning and automation in chemistry. The review concludes by pondering on some tough questions on applying machine learning and their possibility of navigation in the different terrains of chemistry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.