Abstract
Complex financial markets generate massive volumes of unstructured text data from news, publications, social media, and analyst comments. NLP can assist investors and traders make real-time judgments using this data. Analysis of markets This article reviews NLP advancements in three main areas. Generally favorable, negative, or neutral opinions toward companies, industries, or markets. Conversational tone predicts market and investor confidence using machine learning and sentiment lexicons. Finance conversation topic discovery. NLP algorithms may find hidden patterns and investment possibilities by identifying frequently occurring keywords, phrases, and entities in vast text corpora. Classifying critical events like profits, mergers, and regulations. NLP canwarn traders and improve real-time trading decisions by gathering vital news and financial data.Sentiment analysis and transaction volume are used in stock market case studies. Market mood may affect trading performance, since numerical models link favorable sentiment to stock price increases. The importance of active trading in price changes is shown by regular trade volumes
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.