Abstract
The Navier-Stokes transport coefficients for binary mixtures of smooth inelastic hard disks or spheres under gravity are determined from the Boltzmann kinetic theory by application of the Chapman-Enskog method for states near the local homogeneous cooling state. It is shown that the Navier-Stokes transport coefficients are not affected by the presence of gravity. As in the elastic case, the transport coefficients of the mixture verify a set of coupled linear integral equations that are approximately solved by using the leading terms in a Sonine polynomial expansion. The results reported here extend previous calculations [V. Garz\'o and J. W. Dufty, Phys. Fluids {\bf 14}, 1476 (2002)] to an arbitrary number of dimensions. To check the accuracy of the Chapman-Enskog results, the inelastic Boltzmann equation is also numerically solved by means of the direct simulation Monte Carlo method to evaluate the diffusion and shear viscosity coefficients for hard disks. The comparison shows a good agreement over a wide range of values of the coefficients of restitution and the parameters of the mixture (masses and sizes).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.