Abstract

The linear integral equations defining the Navier-Stokes (NS) transport coefficients for polydisperse granular mixtures of smooth inelastic hard disks or spheres are solved by using the leading terms in a Sonine polynomial expansion. Explicit expressions for all the NS transport coefficients are given in terms of the sizes, masses, compositions, density, and restitution coefficients. In addition, the cooling rate is also evaluated to first order in the gradients. The results hold for arbitrary degree of inelasticity and are not limited to specific values of the parameters of the mixture. Finally, a detailed comparison between the derivation of the current theory and previous theories for mixtures is made, with attention paid to the implication of the various treatments employed to date.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.