Abstract

We use a method based on the lubrication approximation in conjunction with a residual-based mass-continuity iterative solution scheme to compute the flow rate and pressure field in distensible converging–diverging tubes for Navier–Stokes fluids. We employ an analytical formula derived from a one-dimensional version of the Navier–Stokes equations to describe the underlying flow model that provides the residual function. This formula correlates the flow rate to the boundary pressures in straight cylindrical elastic tubes with constant-radius. We validate our findings by the convergence toward a final solution with fine discretization as well as by comparison to the Poiseuille-type flow in its convergence toward analytic solutions found earlier in rigid converging–diverging tubes. We also tested the method on limiting special cases of cylindrical elastic tubes with constant-radius where the numerical solutions converged to the expected analytical solutions. The distensible model has also been endorsed by its convergence toward the rigid Poiseuille-type model with increasing the tube wall stiffness. Lubrication-based one-dimensional finite element method was also used for verification. In this investigation five converging–diverging geometries are used for demonstration, validation and as prototypes for modeling converging–diverging geometries in general.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.