Abstract

The purpose of this article is to perform an asymptotic analysis for an interaction problem between a viscous fluid and an elastic structure when the flow domain is a three-dimensional cylindrical tube. We consider a periodic, non-steady, axisymmetric, creeping flow of a viscous incompressible fluid through a long and narrow cylindrical elastic tube. The creeping flow is described by the Stokes equations and for the wall displacement we consider the Koiter's equation. The well posedness of the problem is proved by means of its variational formulation. We construct an asymptotic approximation of the problem for two different cases. In the first case, the stress term in Koiter's equation contains a great parameter as a coefficient and dominates with respect to the inertial term while in the second case both the terms are of the same order and contain the great parameter. An asymptotic analysis is developed with respect to two small parameters. Analysing the leading terms obtained in the second case, we note that the wave phenomena takes place. The small error between the exact solution and the asymptotic one justifies the below constructed asymptotic expansions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.