Abstract

Brain tumors vary widely in size and form, making detection and diagnosis difficult. This study's main aim is to identify abnormal brain images., classify them from normal brain images, and then segment the tumor areas from the categorised brain images. In this study, we offer a technique based on the Nave Bayesian classification approach that can efficiently identify and segment brain tumors. Noises are identified and filtered out during the preprocessing phase of tumor identification. After preprocessing the brain image, GLCM and probabilistic properties are extracted. Naive Bayesian classifier is then used to train and label the retrieved features. When the tumors in a brain picture have been categorised, the watershed segmentation approach is used to isolate the tumors. This paper's brain pictures are from the BRATS 2015 data collection. The suggested approach has a classification rate of 99.2% for MR pictures of normal brain tissue and a rate of 97.3% for MR images of aberrant Glioma brain tissue. In this study, we provide a strategy for detecting and segmenting tumors that has a 97.54% Probability of Detection (POD), a 92.18% Probability of False Detection (POFD), a 98.17% Critical Success Index (CSI), and a 98.55% Percentage of Corrects (PC). The recommended Glioma brain tumour detection technique outperforms existing state-of-the-art approaches in POD, POFD, CSI, and PC because it can identify tumour locations in abnormal brain images.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call