Abstract
To meet Naval needs for sensing of the global environment, the Office of Naval Research (ONR) and the Naval Research Laboratory (NRL) sponsor or carry out a variety of research programs using hyperspectral sensing. For ocean sensing, airborne and space-borne hyperspectral sensors are used to characterize the littoral environment with the aim of providing specification of ocean optical parameters including water clarity, diver visibility, bathymetry, bottom type and beach characterization. For the atmosphere, the Navy has interest in hyperspectral remote sensing from geosynchronous orbit. ONR interests include improved modeling of radiation transport in the atmosphere to infer high resolution profiles of wind, temperature and minor species and cloud characteristics. With sponsorship from Director Defense Research and Engineering (DDR&E), ONR is managing a Multidisciplinary University Research Initiative (MURI) to provide new models for use with geosynchronous data. In partnership with NASA, NOAA and the Air Force, ONR is promoting the flight of the Geosynchronous Imaging Fourier Transform Spectrometer-Indian Ocean METOC Imager (GIFTS-IOMI) program to obtain hyperspectral atmospheric imagery with high spatial, spectral and temporal resolution. For the space environment, NRL has flown a suite of experimental ultraviolet hyperspectral sensors to determine altitude profiles of the ionospheric electron density and upper atmospheric neutral density. The High Resolution Airglow/Aurora Spectroscopy (HIRAAS) experiment on the ARGOS satellite provided a proof of concept for a future series of hyperspectral ultraviolet space weather sensors the first of which has recently been launch on a DMSP weather satellite. ONR is sponsoring the development of a multispectral ultraviolet imager to take this capability to geosynchronous orbit.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have