Abstract

The guest-host intermolecular potentials for the ground states of Br2 in the tetrakaidecahedral (T), pentakaidecahedral (P), and hexakaidecahedral clathrate (H) cages have been calculated using ab initio local correlation methods. Applying the local correlation energy partitioning analysis together with first-order symmetry adapted perturbation theory, we obtain a detailed understanding of the nature of the interactions. In particular, the debated question concerning the possible presence of halogen bonding (XB) is carefully analyzed. In the case of the T cage, given its smaller size, the Br-O distance is too short leading to a larger exchange-repulsion for XB orientations which therefore do not represent minima. For the other two cages, the Br-O distance is too large leading to little orbital overlap effects and thus weaker donor-acceptor interactions; however, these orientations coincide with the global minima.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.