Abstract
Host- guest complexes are commonly found in several disciplines such as biochemistry, cosmetics, food, pharmaceuticals, and the environment. Studying the relationships between host and guest is essential in this context to understand their physicochemical behavior. This study aimed to examine the intermolecular interactions of cyclic alcohols within β-cyclodextrin (β-CD). The experimental spectroscopic results demonstrated the formation of the studied complexes. In this work, two orientations were used: orientation A (hydroxyl group toward the primary hydroxyl of β-CD) and orientation B (hydroxyl group toward the secondary hydroxyl of β-CD). The results indicate that regardless of the orientation used, the profile energy is thermodynamically favorable. However, there are differences in terms of greater or less stability in terms of the thermodynamic parameters studied. Physicochemical properties demonstrate that the host–guest complex forms spontaneously, and exothermic mode. The interaction between cyclic alcohols and β-CD in orientation A promotes a more pronounced deformation of the secondary edge of β-CD. Moreover, the arrangement of moleculesdemonstrates that intramolecular hydrogen bonds are less stable between the glycosidic units of β-CD. This arrangement may help or hinder the development of intermolecular hydrogen bonds.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have