Abstract
This paper focuses on the physical mechanism of elongated counterflows occurring in vortex tubes and hydrocyclones. To this end, a new solution to the Navier–Stokes equations is obtained which describes a flow pattern consisting of two through-flows and the global meridional circulation. One of the through-flows has U-shape geometry. It is shown that swirl decay due to fluid-wall friction induces both the U-shape through-flow and the circulation. The circulation does not deteriorate particle separation. The solution illustrates how the swirl-induced pressure distribution drives the counterflow and results in the paradoxical centrifugal stratification where the high-density fluid located at the periphery is hot while the low-density fluid located near the axis is cold.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have