Abstract
Coastal cities are facing a rise in groundwater levels induced by sea level rise, further triggering saturation excess flooding where groundwater levels reach the topographic surface or reduce the storage capacity of the soil, thus stressing the existing infrastructure. Lowering groundwater levels is a priority for sustaining the long-term livelihood of coastal cities. In the absence of studies assessing the possibility of using tree-planting as a measure of alleviating saturation excess flooding in the context of rising groundwater levels, the multi-benefit nature of tree-planting programs as sustainable Nature-based solutions (NBSs) in coastal cities in the Global South is discussed. In environments where groundwater is shallow, trees uptake groundwater or reduce groundwater recharge, thereby contributing to lower groundwater levels and increasing the unsaturated zone thickness, further reducing the risk of saturation excess flooding. Tree-planting programs represent long-term solutions sustained by environmental factors that are complementary to conventional engineering solutions. The multi-benefit nature of such NBSs and the expected positive environmental, economic, and social outcomes make them particularly promising. Wide social acceptance was identified as crucial for the long-term success of any tree-planting program, as the social factor plays a major role in addressing most weaknesses and threats of the solution. In the case of Nouakchott City (Mauritania), where a rise in groundwater levels has led to permanent saturation excess flooding, a tree-planting program has the potential to lower the groundwater levels, thereby reducing flooding during the rainy season.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have