Abstract

IgG class antibodies express catalytic activities rarely and at very low levels. Here, we studied polyclonal IgA and IgG preparations from healthy human sera and saliva for the ability to hydrolyze model peptidyl-aminomethylcoumarin (peptide-AMC) substrates. These substrates permit objective evaluation of the catalytic potential of the antibody classes with minimal effects of noncovalent interactions occurring at sites remote from the reaction center. The IgA preparations hydrolyzed Glu-Ala-Arg-AMC at rates 3-orders of magnitude greater than IgG preparations from the same individuals. The cleavage occurred preferentially on the C terminal side of a basic residue. The activity was confirmed using monoclonal IgAs isolated from patients with multiple myeloma. Active site-directed inhibitors of serine proteases inhibited the catalytic activity and were bound irreversibly by the IgA, suggesting the involvement of a serine protease-like mechanism similar to that utilized by previously described IgM antibodies. These observations suggest that mechanisms underlying B cell clonal selection favor the retention and improvement of catalytic activity in the IgA, but not the IgG compartment of the immune response.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.