Abstract

This study identified koenidine (4) as a metabolically stable antidiabetic compound, when evaluated in a rodent type 2 model (leptin receptor-deficient db/db mice), and showed a considerable reduction in the postprandial blood glucose profile with an improvement in insulin sensitivity. Biological studies were directed from the preliminary in vitro evaluation of the effects of isolated carbazole alkaloids (1-6) on glucose uptake and GLUT4 translocation in L6-GLUT4myc myotubes, followed by an investigation of their activity (2-5) in streptozotocin-induced diabetic rats. The effect of koenidine (4) on GLUT4 translocation was mediated by the AKT-dependent signaling pathway in L6-GLUT4myc myotubes. Moreover, in vivo pharmacokinetic studies of compounds 2 and 4 clearly showed that compound 4 was 2.7 times more bioavailable than compound 2, resulting in a superior in vivo efficacy. Therefore, these studies suggested that koenidine (4) may serve as a promising lead natural scaffold for managing insulin resistance and diabetes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.