Abstract
Water is known to change the lattice-preferred orientation (LPO) of olivine, which significantly affects seismic anisotropy in the Earth's upper mantle. Research into the LPO of olivine in the deep interior of the Earth has been limited due to inadequate specimens. We report both the water-induced LPOs of olivine and the presence of large quantities of water inside olivine, enstatite, and garnet in garnet peridotites from the North Qaidam ultrahigh-pressure (UHP) collision belt in NW China. We show that the [001] axis of olivine is aligned subparallel to the lineation and that the [100] axis is strongly aligned subnormal to the foliation. This alignment is a known feature of type-C LPO of olivine formed experimentally under water-rich conditions (≥700ppmH/Si) at high pressure and temperature. Enstatite possessed an LPO with the [001] axis aligned parallel to the lineation and the [100] axis aligned normal to the foliation. FTIR analysis of this specimen revealed that olivine contained concentrations of water up to 1130±50ppmH/Si in clean areas, whereas olivine, enstatite, and garnet contained considerably more water, i.e., 2600±100ppmH/Si, 5000±100ppmH/Si, and 21,000±200ppmH/Si, respectively, when exsolved inclusions were visible. Confocal micro-Raman spectroscopy of these exsolved inclusions revealed that they were composed of hornblende and amphiboles. Straight dislocations were also commonly observed in olivine and are characteristic of olivine that had been experimentally deformed under hydrous conditions. These observations suggest that the type-C LPO of olivine in the North Qaidam UHP belt formed under water-rich conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.