Abstract

Background“Evolution Canyon” (ECI) at Lower Nahal Oren, Mount Carmel, Israel, is an optimal natural microscale model for unraveling evolution in action highlighting the basic evolutionary processes of adaptation and speciation. A major model organism in ECI is wild emmer, Triticum dicoccoides, the progenitor of cultivated wheat, which displays dramatic interslope adaptive and speciational divergence on the tropical-xeric “African” slope (AS) and the temperate-mesic “European” slope (ES), separated on average by 250 m.MethodsWe examined 278 single sequence repeats (SSRs) and the phenotype diversity of the resistance to powdery mildew between the opposite slopes. Furthermore, 18 phenotypes on the AS and 20 phenotypes on the ES, were inoculated by both Bgt E09 and a mixture of powdery mildew races.ResultsIn the experiment of genetic diversity, very little polymorphism was identified intra-slope in the accessions from both the AS or ES. By contrast, 148 pairs of SSR primers (53.23%) amplified polymorphic products between the phenotypes of AS and ES. There are some differences between the two wild emmer wheat genomes and the inter-slope SSR polymorphic products between genome A and B. Interestingly, all wild emmer types growing on the south-facing slope (SFS=AS) were susceptible to a composite of Blumeria graminis, while the ones growing on the north-facing slope (NFS=ES) were highly resistant to Blumeria graminis at both seedling and adult stages.Conclusion/SignificanceRemarkable inter-slope evolutionary divergent processes occur in wild emmer wheat, T. dicoccoides at EC I, despite the shot average distance of 250 meters. The AS, a dry and hot slope, did not develop resistance to powdery mildew, whereas the ES, a cool and humid slope, did develop resistance since the disease stress was strong there. This is a remarkable demonstration in host-pathogen interaction on how resistance develops when stress causes an adaptive result at a micro-scale distance.

Highlights

  • The "Evolution Canyon" (EC I) model is the subject of a long-term research program that started in 1990 at Lower Nahal Oren, Mount Carmel, Israel

  • There are some differences between the two wild emmer wheat genomes and the inter-slope SSR polymorphic products between genome A and B

  • All wild emmer types growing on the south-facing slope (SFS=African” slope (AS)) were susceptible to a composite of Blumeria graminis, while the ones growing on the north-facing slope (NFS=European” slope (ES)) were highly resistant to Blumeria graminis at both seedling and adult stages

Read more

Summary

Background

“Evolution Canyon” (ECI) at Lower Nahal Oren, Mount Carmel, Israel, is an optimal natural microscale model for unraveling evolution in action highlighting the basic evolutionary processes of adaptation and speciation. A major model organism in ECI is wild emmer, Triticum dicoccoides, the progenitor of cultivated wheat, which displays dramatic interslope adaptive and speciational divergence on the tropical-xeric “African” slope (AS) and the temperate-mesic “European” slope (ES), separated on average by 250 m

Methods
Results
Introduction
Materials and Methods
Evaluation for Powdery Mildew Resistance
Results and Discussion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call