Abstract
Natural based composites of hydroxyapatite/Gum Arabic designed for removal of toxic metal arsenic (III) from waste water were synthesized and evaluated. Several composites with various compositions were prepared by the wet chemical method and analyzed using various spectroscopic and analytical methods such as: Fourier transform infrared spectroscopy, total organic carbon production, XRD analysis and scanning electron microscope. The rates of weight loss and water absorption of the HAp/GA composites as a function of time were evaluated in phosphate-buffered saline solution at 37 °C and a pH of 7.4. The effects of several variables on adsorption of arsenic (III) by HAp/GA composites were evaluated. The variables include arsenic (III) concentration, contact time (t) and complex surface nature of HAp/GA composite. Three surface complexation models were used to study the mechanisms controlled the adsorption. The models were Langmuir, Freundlich and Dubinin Radushkevich. The adsorption kinetic of arsenic (III) on the composite surface was described by three modes: pseudo first order, pseudo second order and the intra particle diffusion. The results revealed that, the rate of adsorption of arsenic (III) by HAp/GA composites was controlled by two main factors: the initial concentration of arsenic (III) and the contact time. The kinetic studies also showed that, the rate of adsorption is a second order. The results indicate that, composite offered in this study could be a valuable tool for removing toxic metals for contaminated water by adsorption.Graphical abstract.
Highlights
In recent years, there has been an increasing concern of environmental pollution and public health issues associated with heavy metals
The IR spectra of Gum Arabic (GA) and HAp are overlaid in Fig. 2a. the IR shows a band at 3419 cm−1 corresponds to the OH stretching vibration of the Arabic gum
Several HAp/GA composites with various weight ratios were prepared by the solution method
Summary
There has been an increasing concern of environmental pollution and public health issues associated with heavy metals. Sources of heavy metals has risen dramatically to include mining, industrial, medical, agricultural, household chemicals, and others [1]. Among the metal that raise serious concerns are Hg, Cr, Ni, Zn, Cu, AS, and Cd [2]. The main source of the heavy metals in wastewaters are industrial discharges and household chemical. Heavy metals in the ground and waste water are usually present in the form of inorganic complexes.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have