Abstract

BackgroundFlaxseed oil is characterized by high content of essential polyunsaturated fatty acids (PUFA) promoted as a human dietary supplement protecting against atherosclerosis. The disadvantage of the high PUFA content in flax oil is high susceptibility to oxidation, which can result in carcinogenic compound formation. Linola flax cultivar is characterized by high linoleic acid content in comparison to traditional flax cultivars rich in linolenic acid. The changes in fatty acid proportions increase oxidative stability of Linola oil and broaden its use as an edible oil for cooking. However one of investigated transgenic lines has high ALA content making it suitable as omega-3 source. Protection of PUFA oxidation is a critical factor in oil quality. The aim of this study was to investigate the impact of phenylpropanoid contents on the oil properties important during the whole technological process from seed storage to grinding and oil pressing, which may influence health benefits as well as shelf-life, and to establish guidelines for the selection of new cultivars.MethodsThe composition of oils was determined by chromatographic (GS-FID and LC-PDA-MS) methods. Antioxidant properties of secondary metabolites were analyzed by DPPH method. The stability of oils was investigated: a) during regular storage by measuring acid value peroxide value p-anisidine value malondialdehyde, conjugated dienes and trienes; b) by using accelerated rancidity tests by TBARS reaction; c) by thermoanalytical - differential scanning calorimetry (DSC).ResultsIn one approach, in order to increase oil stability, exogenous substances added are mainly lipid soluble antioxidants from the isoprenoid pathway, such as tocopherol and carotene. The other approach is based on transgenic plant generation that accumulates water soluble compounds. Increased accumulation of phenolic compounds in flax seeds was achieved by three different strategies that modify genes coding for enzymes from the phenylpropanoid pathway. The three types of transgenic flax had different phenylpropanoid profiles detected in oil, highly increasing its stability.ConclusionsWe found that hydrophilic phenylpropanoids more than lipophilic isoprenoid compounds determine oil stability however they can work synergistically. Among phenolics the caffeic acid was most effective in increasing oil stability.

Highlights

  • Flaxseed oil is characterized by high content of essential polyunsaturated fatty acids (PUFA) promoted as a human dietary supplement protecting against atherosclerosis

  • Flax seeds have been recommended for the human diet, because of their high content of components that are beneficial for human health

  • It has been widely proven that a high level of ALA in the diet can reduce the risk of cancer [4] and cardiovascular diseases [5] and decrease the production of arachidonic acids and other pro-inflammatory eicosanoids [6]

Read more

Summary

Introduction

Flaxseed oil is characterized by high content of essential polyunsaturated fatty acids (PUFA) promoted as a human dietary supplement protecting against atherosclerosis. Flax seeds have been recommended for the human diet, because of their high content of components that are beneficial for human health. They contain a relatively high quantity of polyunsaturated fatty acids (PUFA), secoisolariciresinol. The current western diet typically contains an excess of ω-6 acids (around 15/1 in most areas), but consumption of oils with a high level of ω-3 fatty acids such as flax oil could be a good solution [7]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call