Abstract

Methods are known for the production of synthetic protein-like molecules of nonlinear architecture with molecular masses in the 10-20 kDa range. To synthesize such compounds of higher molecular mass and complexity, chemoselective ligation of natural (as opposed to synthetic) peptide building blocks was studied. In preliminary experiments with model peptides, conditions for the formation of peptide oximes were investigated, and their stability at alkaline pH was examined, to resolve a literature controversy. It was found that low pH (down to 2.1) was suitable for polyoxime formation and that the oxime bond was stable for up to 65 h at pH 8 and for more than 2 h at pH 9. Then, using natural peptides, it was found to be possible to synthesize, and characterize by mass spectrometry, nine-component species with molecular masses > 48 kDa. This is about twice the size of homogeneous artificial proteins previously described. Such complex molecules of defined structure are beginning to find applications as vaccine candidates, as radioimmunodiagnostic agents, and as nonviral gene therapy delivery vehicles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.