Abstract
We studied the behavior of doxorubicin (DOX; an anticancer drug) molecules loaded on a boron nitride oxide nanosheet (BNO-NS) using the density functional theory (DFT), time-dependent density functional theory (TDDFT), and molecular dynamic (MD) simulation methods. We found that DOX molecules in π-π or covalent interaction with BNO-NS preserve their optical properties in water. Moreover, the BNO-NS vector allowed stabilizing the DOX molecules on a cellular membrane contrary to isolated DOX that randomly moved in the solvent box without any interaction with the cell membrane. From these results, we conclude that hydrophilic BNO-NS represents a good candidate for DOX molecule transport and stabilization near a cell membrane. In this drug delivery system, the choice of BNO-NS as nanovector is important because it allows delivering an elevated therapeutic dose directly on the cancer cell target without hindrance of the DOX payload.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have