Abstract

Identification of suitable scaffolds onto which human stem cells can be seeded to generate functional three-dimensional tissues is a major research goal. A natural marine sponge skeleton was selected as a potential scaffold on the basis of the hydration potential of the fiber, the presence of open interconnected channels created by the fiber network, the collagenous composition of the fiber, and the structural diversity of fiber architecture. The skeleton of an undetermined species of Spongia (Class Demospongiae: Order Dictyoceratida: Family Spongiidae), composed of spongin, supported growth of human osteoprogenitor cells. Cell attachment and invasion into the framework were observed within 16 h, followed by development into membranous sheets between the sponge fibers by concentric infilling. Histochemical staining for alkaline phosphatase and type I collagen indicated formation of bone matrix as confirmed by birefringence. At 9 and 14 days alkaline phosphatase-specific activity in sponge fiber-osteoprogenitor cell cultures was significantly greater than in control cultures on cell culture plastic. Adsorption with recombinant human bone morphogenetic protein 2 confirmed the potential of this sponge skeleton as a delivery scaffold for osteogenic factors. The abundance and structural diversity of natural marine sponge skeletons and their potential as multifunctional, cell conductive and inductive frameworks indicate a promising new source of scaffold for tissue regeneration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call